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Geomagnetic Storms

• Geomagnetic storms are brief disturbances in
Earth’s magnetosphere caused by energy transferred
from the solar wind.

• They have the potential to cause severe
disruptions of critical infrastructure such as
satellites, power grids, oil pipelines, etc.
• The largest storms result from solar coronal mass

ejections (CMEs).
• Large expulsions of plasma and magnetic field from

the Sun’s corona
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DST/SYM-H Index

• The SYM-H index is a 1-minute resolution version
of the hourly DST index.
• The DST index measures the symmetric

geomagnetic disturbance of the horizontal
component of Earth’s magnetic field near the
magnetic equator on the Earth’s surface
• Mostly hovers around 0 nT during geomagnetically

quiet times

• Geomagnetic storms are defined and categorized
according to the DST index.
• Moderate storm: -100 nT < DST < -50 nT
• Intense storm: -250 nT < DST < -100 nT
• Super storm: DST < -250 nT

• Our objective: Obtain interpretable predictions of
the SYM-H index 1-2 hours ahead.
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Interpretable/Explainable ML

• Most ML methods, such as neural networks, are highly
accurate but are too complex for us to understand its
decision making process (black box).

• Interpretability/explainability is crucial if we are to trust
these methods, especially in high-risk applications like
healthcare and finance.

• In the space sciences, interpretability can:

1. help us verify if the model’s predictions are consistent
with physical knowledge

2. potentially provide novel insight into underlying physics
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Interpretable/Explainable ML

• In many cases, there exists a tradeoff between accuracy
and intrinsic interpretability.

• Interpretable ML methods can be classified as:
• Intrinsic: The model itself yields outputs that are

interpretable
• Post-hoc: Interpretable results are obtained after

training.
• Local vs. global: Explains individual predictions vs.

overall model behavior
• Model-specific vs. model-agnostic

• In this work, we use a local model-agnostic
interpretability method called SHAP (Shapley Additive
Explanations) to interpret predictions from gradient
boosting machines (GBMs).
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Gradient Boosting Machines (GBMs)

• GBMs, also known as gradient boosted trees, have been used sucessfully for prediction in
a wide range of domains.

• Some have argued that they are more accurate than neural networks for prediction with
tabular data.

Intuition: Instead of a single complex model,
iteratively construct simple models that
improve on previously constructed models and
aggregate them to make predictions.
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Gradient Boosting Machines (GBMs)

Model: yi = f (xi ) = α +
M∑

m=1

Tm(xi ) + εi ,

where α is an intercept; Tm are regression trees; M is the # of iterations (trees).

• We train GBMs with XGBoost which penalizes overly-complex trees.

• At iteration m, we construct Tm by minimizing

L(m)(f ) =
∑
i

[
yi−
(
ŷ
(m−1)
i +Tm(xi )

)]2
+

m∑
j=1

Ω(Tj),

• ` is the loss function
• Ω penalizes the complexity of the regression

trees
• ŷ

(m−1)
i = α +

∑m−1
j=1 Tj(xi ).
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Gradient Boosting Machines (GBMs)

+ … SYM-H(t+60) = 𝜂 ✕ 𝜂 ✕

Learning rate

+ … +

Tree depth

Structure of GBM trained on past SYM-H, solar wind & IMF parameters to predict SYM-H 1 hour ahead.

• There are several hyperparameters for controlling tree complexity.
• learning rate, max tree depth, min. child weight, feature subsampling percentage, number of

trees, etc
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SHAP Values

• SHAP computes feature contributions for individual predictions using ideas from
coalition game theory.

• SHAP belongs to the class of additive feature attribution methods which assumes the
following explanation model for an individual prediction:

Prediction = g(z′) = φ0 +
M∑
i=1

φiz
′
i

• φ0 is a baseline value (e.g. mean); M is the number of input features
• z ′i is a binary variable indicating whether feature i is present
• φi is the feature contribution from feature i

• SHAP yields the unique solution to φi that satisfies three desirable theoretical properties
(local accuracy, missingness, consistency)
• Although SHAP is model-agnostic, it is more computationally feasible for tree-based

models like GBM because of an algorithm that exploits their structure (TreeSHAP).
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Data Preprocessing

• We use different combinations of the following features as inputs:

1. Past SYM-H values
2. IMF parameters (Bx ,By ,Bz)
3. Solar wind parameters (density, temperature, Vx)
4. Derived parameters: dynamic pressure, (rectified) electric field

• SYM-H index data was obtained from OMNI.

• Solar wind/IMF parameters were obtained from ACE level 2 data from CDAWeb.
• 42 strong geomagnetic storms between 1998-2018 for training/testing.

• SYM-H < -100 nT
• Same storms used in Siciliano et al. (2021) and Collado-Villaverde et al. (2021)

• 2 hour history of solar wind/IMF/derived parameters & 1 hour history of past SYM-H
when past SYM-H is included

• 30 hour history of solar wind/IMF/derived parameters when past SYM-H is excluded
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Comparison to existing methods

• GBMs outperform existing methods based on LSTMs for forecasting the SYM-H index 1
hour ahead using only past SYM-H and IMF parameters.
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Storm # GBM LSTM1 LSTM2 Persistence

26 5.863 6.630 6.700 7.631
27 7.729 8.913 8.900 9.623
28 4.281 5.858 5.400 5.814
29 5.833 6.683 7.200 7.174
30 4.927 5.200 5.600 4.810
31 8.277 8.584 10.700 10.429
32 6.841 7.259 8.300 10.528
33 14.492 13.340 16.300 21.167
34 10.190 10.034 11.300 10.913
35 7.154 7.693 8.500 8.011
36 8.512 9.525 8.700 9.708
37 14.548 15.184 17.500 19.698
38 3.886 4.080 4.200 4.842
39 5.901 6.431 5.600 7.597
40 4.976 4.673 5.500 5.057
41 7.558 7.882 9.000 9.984
42 5.030 5.669 5.900 6.036

Mean 7.412 7.860 8.550 9.354
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Interpreting results: Percentage contributions

• Past SYM-H and Bz have the two largest
contributions.

• Surprisingly, Vx and the rectified electric
field are much less important.

• We would expect ρV 2
x to be most

important during the sudden storm
commencement but the contribution is
similiar to that of Bz when predicting
positive SYM-H.

• ρV 2
x , Vx , ρ have marginal contributions

only for predicting low negative SYM-H.
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Interpreting results: Percentage contributions

• Bz becomes the largest contributor.

• Surprisingly, the contribution from
rectified Ey is still small.
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Interpreting results: Nov. 2004 Storm

• 18:00 - 21:00 UT: Observed SYM-H is
positive
• Density contributes ∼ 20%
• Dynamic pressure should have large

contribution but doesn’t

• 20:45 UT Nov. 7 - 06:00 UT Nov. 8
(Main phase)
• Relative contrib. from Bz have peaks

around 21:15-22:00 UT and 24:00 UT,
corresponding to local minima of Bz

• We would expect Bz to be a large
contributor when it crosses 0 but this
doesn’t happen

• Past SYM-H dominates during recovery
phase as expected.
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Interpreting results: Nov. 2004 Storm

• 18:00 - 21:00 UT: Observed SYM-H is
positive
• Main contributors are density, Vx , and

rectified Ey .

• Relative contrib. from Bz gradually
increases as SYM-H goes negative.

• Other features contribute more starting
from 12:00 UT when Bz turns positive.
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Interpreting results: Jan. 2004 Storm

• Complicated storm due to the highly
variable Bz in the CME sheath (00:00 UT
- 11:00 UT Jan. 22)

• 02:00 - 11:00 UT: ρV 2
x is the main

contributor after past SYM-H.

• 11:00 - 14:00 UT: Relative contrib. from
Bz spikes.

• 19:00 - 23:00 UT: Relative contrib. from
Bz , ρV 2

x increases, correctly predicting the
slow down of the recovery.
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Interpreting results: Jan. 2004 Storm

• Vx becomes a large contributor.

• 02:00 UT: ρV 2
x has a large contribution

when observed SYM-H turns positive.

• Bx starts to have a large contribution
around 18:00 UT.
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