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Background: Bayesian Inference/Latent Variable Modeling

Consider a latent variable model of data x = {xi} and latent variables z = {zi} with joint
density

p(z, x) = p(z)p(x|z).

Example: Gaussian Mixture model

p(zi = k) = πk , k = 1, . . . ,K

xi |zi = k ∼ N(µk , σ
2
k)

Objective: Compute/sample from the posterior distribution pθ(z|x) = p(x|z)p(z)
p(x) .

• p(x) is usually difficult/impossible to compute.

Two solutions

1. MCMC: Construct an ergodic Markov chain whose stationary distribution is pθ(z|x).

2. Variational Inference (VI): Compute an approximation of pθ(z|x) by optimizing over a
family of approx. distributions.
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Background: Variational Inference

Objective: Obtain approximate posterior (or recognition model)

q∗φ(z|x) = arg min
q∈Q

DKL(qφ(z|x)||pθ(z|x)),

• Q is a (specified) variational family (e.g. mean-field)

• φ contain the variational parameters; θ contain the model parameters.

KL Divergence:

DKL(qφ(z|x)||pθ(z|x)) :=

∫
log
(qφ(z|x)

pθ(z|x)

)
qφ(z|x)dz = Eq

[
log

qφ(Z|x)

pθ(Z|x)

]
• Asymmetric: DKL(q||p) (exclusive KL) 6= DKL(p||q) (inclusive KL).

• VI chooses to optimize DKL(q||p) b/c it’s easier to take expectations w.r.t. q.
• There’s existing work about optimizing DKL(p||q) (Markovian score climbing).

• Exclusive KL: q(x) > 0⇒ p(x) > 0
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Background: Variational Inference

• The marginal likelihood (evidence) p(x) can be expressed as

log pθ(x) = DKL(qφ(z|x)||pθ(z|x)) + Eq

[
− log qφ(z|x) + log pθ(x, z)

]︸ ︷︷ ︸
L(θ,φ;x)

≥ L(θ, φ; x),

where L(θ, φ; x) is the evidence lower bound (ELBO) which can also be written as

L(θ, φ; x) = −DKL(qφ(z|x)||pθ(z)) + Eq

[
log pθ(x|z)

]
.

• Goal: Optimize L(θ, φ; x) w.r.t. both φ and θ.
• Optimizing w.r.t. θ is easy

• Unbiased gradient estimates are straightforward to obtain.
• Optimizing w.r.t. φ is harder.

• Expectations in the ELBO are taken w.r.t. qφ(z|x), which is a function of φ.
• Reparameterization trick is useful here.
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Overview of contributions

Paper #1: Auto-encoding Variational Bayes (Kingma et al. 2014)
• Two significant contributions

1. SGVB estimator + AEVB algorithm
2. Variational Auto-encoders (VAEs)

Paper #2: Variational Inference with Normalizing Flows (Rezende et al. 2015)
• Provides a rich, computationally-feasible approximate posterior using normalizing flows.

• In the asymptotic regime, the space of solutions is rich enough to contain the true posterior
distribution.

• Uses gradient estimator from Paper #1 (amortized VI).

Topics I will not cover:

• Experiments/empirical results

• infinitesimal flows
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Paper #1: Reparameterization Trick

Suppose z ∼ qφ(z|x). Then, it is often possible to express z as

z = gφ(ε, x),

where ε ∼ p(ε) (a distribution that doesn’t depend on φ).

Example: Suppose z ∼ N(µ, σ2). Then z = µ+ σε, where ε ∼ N(0, 1).

Why is it useful?
• In general, for a differentiable function f ,

∇φEqφ [f (z)] 6= Eqφ [∇φf (z)]

• However, with the reparameterization trick,

∇φEqφ [f (z)] = ∇φEp(ε)[f (gφ(ε, x))]

= Ep(ε)[∇φf (gφ(ε, x))]

≈ 1

L

L∑
l=1

f (gφ(ε(l), x)), where ε(l) ∼ p(ε)
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Paper #1: Reparameterization Trick

Illustration of reparameterization trick from Kingma (2017).
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Paper #1: Stochastic Gradient Variational Bayes Estimators

Using the reparameterization trick, a generic SGVB estimator of the ELBO is given by

L̃A(θ, φ; x) =
1

L

L∑
l=1

[
log pθ(x, z(l))− log qφ(z(l)|x)

]
,

where z(l) = gφ(ε(l), x) and ε(l) ∼ p(ε), for l = 1, . . . , L.

When DKL(qφ(z|x)||pθ(z)) can be computed analytically (e.g. Gaussian case),

L̃B(θ, φ; x) = −DKL(qφ(z|x)||pθ(z)) +
1

L

L∑
l=1

log pθ(x|z(l))

• L̃B typically has less variance than L̃A.
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Paper #1: Auto-Encoding Variational Bayes Algorithm

The mini-batch estimator L̃M is given by

L̃M(θ, φ;XM) =
N

M

M∑
i=1

L̃(θ, φ; x)

13 / 28



Paper #1: Auto-Encoding Variational Bayes Algorithm

How is it related to auto-encoders?
An autoencoder is a neural network used for unsupervised learning that minimizes an
objective function with the form: reconstruction error + regularizer.

Recall:

L̃B(θ, φ; x) = −DKL(qφ(z|x)||pθ(z))︸ ︷︷ ︸
regularizer

+
1

L

L∑
l=1

log pθ(x|z(l))︸ ︷︷ ︸
Negative reconstruction error

14 / 28



Paper #1: Variational Auto-Encoder
VAEs are given as an example but AFAIK, this is the original paper that introduced them.

Assume x, z are continuous.
Decoder (generative model)

p(z) = N(z; 0, I )

p(x|z) = N(x;µ, σ2I )

µ = W2h + b2

log σ2 = W3h + b3

h = tanh(W1z + b1)

Encoder (inference model)

qφ(z|x) = N(z; µ̃, σ̃2I )

h̃ = tanh(W̃1x + b̃1)

µ̃ = W̃1h̃ + b̃2

log σ̃2 = W̃3h̃ + b̃3

θ = {Wj , bj : j = 1, 2, 3}, φ = {W̃j , b̃j : j = 1, 2, 3}

• VAEs are a non-linear generalization of probabilistic PCA, where µ = Wz.
• In this case, the evidence has an analytical form: p(x) = N(0,WW′ + σ2I ).

To sample from qφ(z|x),

1. Sample ε(`) ∼ N(0, I ), ` = 1, . . . , L
2. Compute z(`) = µ̃+ σ̃ � ε(`), where � denotes element-wise product.
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Paper #1: Variational Auto-Encoder

In the case where p(z) and qφ(z|x) are Gaussian, −DKL(qφ(z||x)||p(z)) can be computed
analytically.

−DKL(qφ(z|x)||p(z)) =
1

2

J∑
j=1

[
1 + log(σ̃2j )− µ̃2j − σ̃2j

]

The SGVB estimator for VAEs is given by,

L̃B(θ, φ; x) = −DKL(qφ(z|x)||p(z)) +
1

L

L∑
`=1

log pθ(x|z(`)) (1)

where z(`) = µ̃+ σ̃ � ε(`) and ε(`) ∼ N(0, I ).

• We can optimize (1) using the AEVB algorithm to obtain estimates of θ and φ.
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Paper #2: Normalizing flows

• In paper #1, a Gaussian distribution with diagonal covariance was used as the
approximate posterior.
• How can we obtain a more flexible family of variational distributions?

• Solution: Normalizing flows

• Normalizing flows transform simple distributions (e.g. Gaussian) through a sequence of
invertible mappings into rich complex distributions.

Review: Change of variables

Let f : Rd → Rd be an invertible, smooth function with inverse f −1 and z ∼ q(z).
Then z′ = f (z) has the distribution:

q(z′) = q(z)
∣∣∣det

∂f −1

∂z′

∣∣∣ = q(z)
∣∣∣det

∂f

∂z

∣∣∣−1
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Paper #2: Normalizing flows

Suppose z0 ∼ q0(z0) and zK = fK ◦ . . . f2 ◦ f1(z0), where f1, . . . , fK is a sequence of mappings.
Then the log density of zK is given by

log qK (zK ) = log q0(z0)−
K∑

k=1

log det
∣∣∣ ∂fk
∂zk

∣∣∣

By the law of the unconscious statistician, for any function h,

EqK

[
h(z)

]
= Eq0

[
h(fK ◦ · · · ◦ f1(z0))

]
• There are many good choices for the sequence of invertible transformations. Paper #2

uses planar and radial flows.
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Paper #2: Normalizing flows

Planar flows are transformations of the form

f (z) = z + uh(w′z + b),

where λ = {w ∈ RD ,u ∈ RD , b ∈ R} are free parameters and h is a smooth function with
derivative h′.

• The logdet-Jacobian term can computed in O(D) time:

det
∣∣∣∂f
∂z

∣∣∣ =
∣∣det(I + uψ(z)′)

∣∣ = |1 + u′ψ(z)|,

ψ(z) = h′(w′z + b)w.

• The log-density of zK = fK ◦ · · · ◦ f1(z), where fk = z + ukh(w′kz + bk):

log qK (zK ) = log q0(z)−
K∑

k=1

log |1 + u′kψk(zk)|,
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Paper #2: Normalizing flows

Radial flows are transformations of the form:

f (z) = z + βh(α, r)(z− z0),

where r = ||z− z0||; h(α, r) = 1/(α + r); and λ = {z0 ∈ RD , α ∈ R, β ∈ R} are parameters.

• The logdet-Jacobian can also be computed in linear time:

det
∣∣∣∂f
∂z

∣∣∣ =
[
1 + βh(α, r)

]d−1[
1 + βh(α, r) + h′(α, r)r

]
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Paper #2: Normalizing flows

Figure 1 in Rezende et al. (2015) showing effects planar/radial flows on two distributions.
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Paper #2: Normalizing flows

Flow-based ELBO (negative free energy bound)
Suppose the approximate posterior is parameterized with a (planar) flow of length K
i.e. qφ(z|x) := qK (zK ).

Then the ELBO is given by

L(θ, φ; x) = Eqφ(z|x)

[
− log qφ(z|x) + log p(x, z)

]
= Eq0(z0)

[
− log qK (zK ) + log p(x, zK )

]
= −Eq0(z0)

[
log q0(z0)

]
+ Eq0(z0)

[
log p(x, zK )

]
+ Eq0(z0)

[ K∑
k=1

log |1 + u′kψk(zk)
]

• Paper #2 also constructs a recognition model (inference network) using a deep neural
network that maps observations x to the parameters of q0 = N(µ, σ2) and flow
parameters λ.
• They don’t give explicit details about how they do this like paper #1 does.
• It could be interesting to work out the explicit form of the ELBO here (if time permits).
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Paper #2: VI algorithm

• Similiar in nature to the AEVB algorithm

• The authors don’t make this explicit in the paper MC estimates are still necessary (I
think?)
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Overview

1. Background
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VI algorithm

5. Comparison of papers
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Comparison of both papers

• Both papers focus on different problems in VI.
• Paper #1 focuses on estimating the ELBO and its gradient.
• Paper #2 focuses on on coming up with a flexible variational family.

• In paper #2, the initial density is q0 = N(µ, σ2), where µ and σ are parameterized with
neural networks. This is similiar to paper #1 but they use this as the approximate
posterior, whereas this is transformed through normalizing flows in paper #2.

• Paper #1 gives a specific example where AEVB is applied (VAEs) whereas paper #2
talks about their algorithm more generally.

• Your thoughts?
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Related work

• Wake-sleep algorithm (Hinton et al. (1995))
• Applicable to same general class of continuous latent variable models as AEVB and also

discrete latent variables.
• Drawback: concurrent optimization of two objective functions ; optimization of (a bound

of) the evidence.

• Non-linear Independent Components Estimation (NICE) (Dinh et al. (2014))
• Transformations are neural networks with easy to compute inverses

• Hamiltonian variational approx. (HVI) (Salimans et al. (2015))
• infinitesimal volume-preserving flow
• Elegant but not as computationally efficient
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