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Background: Bayesian Inference/Latent Variable Modeling

Consider a latent variable model of data x = {x;} and latent variables z = {z;} with joint
density

p(z,x) = p(z)p(x|z).
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Consider a latent variable model of data x = {x;} and latent variables z = {z;} with joint
density

p(z,%) = p(2)p(x|2).
Example: Gaussian Mixture model
p(Z,':k):Trk, k:].,...,K
xi|zi = k ~ N(pk, o)

Objective: Compute/sample from the posterior distribution py(z|x) = P(x[2)p(z)
® p(x) is usually difficult/impossible to compute.
Two solutions
1. MCMC: Construct an ergodic Markov chain whose stationary distribution is py(z|x).

2. Variational Inference (VI): Compute an approximation of py(z|x) by optimizing over a
family of approx. distributions.
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Background: Variational Inference

Objective: Obtain approximate posterior (or recognition model)

qy(z|x) = arg rgin Dk (g4 (z[x)|pe(2]x)),
qc

® Q is a (specified) variational family (e.g. mean-field)
® ¢ contain the variational parameters; 6 contain the model parameters.
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Objective: Obtain approximate posterior (or recognition model)
q4(z|x) = arg min Dy (qe(z[x)|[po(z]x)),
qeQ
® Q is a (specified) variational family (e.g. mean-field)

® ¢ contain the variational parameters; 6 contain the model parameters.
KL Divergence:

Draaa(zio)llpalx)) = [ 10g (4227 ) au(aix)az = o [log 242

e Asymmetric: Dii(q||p) (exclusive KL) # Dk (pl||q) (inclusive KL).
® V| chooses to optimize Dki(q||p) b/c it's easier to take expectations w.r.t. q.
® There's existing work about optimizing Dk, (p||q) (Markovian score climbing).
® Exclusive KL: g(x) > 0= p(x) >0
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Background: Variational Inference

® The marginal likelihood (evidence) p(x) can be expressed as

log pa(x) = Dki(qs(z|x)||pa(2|x)) + Eq| — log g4(z|x) + log ps(x, z)| > L(0, ¢; x),

L(0,6:x)

where L(0, ¢;x) is the evidence lower bound (ELBO) which can also be written as

L(0,$;x) = —Dkr(qs(z|x)|ps(z)) + Eq | log po(x|2)].
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Background: Variational Inference

® The marginal likelihood (evidence) p(x) can be expressed as

log pa(x) = Dki(qs(z|x)||pa(2|x)) + Eq| — log g4(z|x) + log ps(x, z)| > L(0, ¢; x),

L(0,6:x)

where L(0, ¢;x) is the evidence lower bound (ELBO) which can also be written as

L(0,$;x) = —Dkr(qs(z|x)|ps(z)) + Eq | log po(x|2)].

® Goal: Optimize £(0, ¢; x) w.r.t. both ¢ and 6.
® Optimizing w.r.t. § is easy
® Unbiased gradient estimates are straightforward to obtain.
® Optimizing w.r.t. ¢ is harder.
® Expectations in the ELBO are taken w.r.t. g(z|x), which is a function of ¢.
® Reparameterization trick is useful here.
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2. Overview of contributions
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Overview of contributions

Paper #1: Auto-encoding Variational Bayes (Kingma et al. 2014)
® Two significant contributions

1. SGVB estimator + AEVB algorithm
2. Variational Auto-encoders (VAEs)
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Overview of contributions

Paper #1: Auto-encoding Variational Bayes (Kingma et al. 2014)
® Two significant contributions

1. SGVB estimator + AEVB algorithm
2. Variational Auto-encoders (VAEs)

Paper #2: Variational Inference with Normalizing Flows (Rezende et al. 2015)
® Provides a rich, computationally-feasible approximate posterior using normalizing flows.

® |n the asymptotic regime, the space of solutions is rich enough to contain the true posterior
distribution.

® Uses gradient estimator from Paper #1 (amortized VI).

Topics | will not cover:
® Experiments/empirical results

® infinitesimal flows
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Paper #1: Reparameterization Trick

Suppose z ~ gy(z|x). Then, it is often possible to express z as

z = gy(e€,x),
where € ~ p(€) (a distribution that doesn’t depend on ¢).
Example: Suppose z ~ N(u,?). Then z =y + oe, where € ~ N(0,1).
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Paper #1: Reparameterization Trick

Suppose z ~ gy(z|x). Then, it is often possible to express z as
z = gy(e€,x),
where € ~ p(€) (a distribution that doesn’t depend on ¢).
Example: Suppose z ~ N(u,?). Then z =y + oe, where € ~ N(0,1).
Why is it useful?
® |n general, for a differentiable function f,
Vo, [F(2)] # Eq,[Vsf(2)]

® However, with the reparameterization trick,

V¢Eq¢[f(z)] = V(]5Ep(e)[f(g<25(€7 X))]

10/28



Paper #1: Reparameterization Trick

Original form Reparameterized form
i l}n(‘l(pr()pl f
~ qy(z|x) V7 z = g(pxe)
b x Vol @ x ~p(e)

: Deterministic node — : Evaluation of f

' : Random node = : Differentiation of f

Hlustration of reparameterization trick from Kingma (2017).
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Paper #1: Stochastic Gradient Variational Bayes Estimators

Using the reparameterization trick, a generic SGVB estimator of the ELBO is given by

L
A6, ¢ x) Z [Iogpe x,2)) — log %5(2(/)‘)()}7

~ \

where z(!) = g¢(e(’),x) and ) ~ p(e), for I=1,..., L.
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Paper #1: Stochastic Gradient Variational Bayes Estimators

Using the reparameterization trick, a generic SGVB estimator of the ELBO is given by

0¢x

~ \

L
Z [Iog po(x,2) — log %5(2(/)‘)()}7

where z(!) = g¢(e(’),x) and ) ~ p(e), for I=1,..., L.
When Dk (q¢(z|x)||ps(z)) can be computed analytically (e.g. Gaussian case),

LB(0, ¢;x) = —Drw(qs(2|x)|po(z Zlogpe x|z

o [B typically has less variance than £A.
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Paper #1: Auto-Encoding Variational Bayes Algorithm

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in scctioncan be used. We use settings M = 100 and L = 1 in experiments.

0, ¢ + Initialize parameters
repeat
XM ¢ Random minibatch of M datapoints (drawn from full dataset)
€ + Random samples from noise distribution p(e)
g V9!¢E‘“f(6, @: XM  €) (Gradients of minibatch estimator @)
6. ¢ + Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])
until convergence of parameters (6, ¢)
return @, ¢

The mini-batch estimator £M is given by
N M
AM oy My § :" .
E (07¢' X ) - M . £(97 YX)
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Paper #1: Auto-Encoding Variational Bayes Algorithm

How is it related to auto-encoders?
An autoencoder is a neural network used for unsupervised learning that minimizes an

objective function with the form: reconstruction error + regularizer.

Recall: ,
LB(0, ¢ x) = —Di(qs(2/%)||po(2)) + % > " log py(x[z")
=1

regularizer

Negative reconstruction error
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Paper #1: Variational Auto-Encoder

VAEs are given as an example but AFAIK, this is the original paper that introduced them.
Assume x, z are continuous.

Decoder (generative model) Encoder (inference model)
p(z) = N(z:0, 1) as(zlx) = N(z: i, 51)
p(x|z) = N(x; u, 021) h = tanh(Wix + by)
= Wsh+ by fi= Wih+ by
log 02 = Wsh + b3 Iog52: Wsh + bs

h = tanh(W;z + b;)
0= {W,b;:j=1,23}¢={W,b:j=1723}
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VAEs are given as an example but AFAIK, this is the original paper that introduced them.
Assume x, z are continuous.

Decoder (generative model) Encoder (inference model)
p(z) = N(z:0, 1) as(zlx) = N(z: i, 51)
p(x|z) = N(x; u, 021) h = tanh(Wix + by)
= Wsh+ by fi= Wih+ by
log 02 = Wsh + b3 Iog52: Wsh + bs

h = tanh(W;z + b;)

0= {W,b;:j=1,23}¢={W,b:j=1723}
® VAEs are a non-linear generalization of probabilistic PCA, where y = Wz,
® In this case, the evidence has an analytical form: p(x) = N(0, WW' + o2/).

To sample from g,(z|x),
1. Sample € ~ N(0,1), £=1,...,L

O _ ~ = ¢ :
2. Compute z() = nw+o® ¢®), where ® denotes element-wise product. 1528



Paper #1: Variational Auto-Encoder

In the case where p(z) and qg4(z|x) are Gaussian, — Dy (q4(z||x)||p(z)) can be computed
analytically.

J
~ Dra(as(zX)]p(2) Z [1+10g(57) — 2 - 7]
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Paper #1: Variational Auto-Encoder

In the case where p(z) and qg4(z|x) are Gaussian, — Dy (q4(z||x)||p(z)) can be computed
analytically.

J
~ Dra(as(zX)]p(2) Z [1+10g(57) — 2 - 7]

The SGVB estimator for VAEs is given by,

L
EB(QWb; x) = —Dki(q4(z|x)[|p(2)) Zlogpg x|z(€) (1)
Z

where z() = fi + 5 © ¢ and € ~ N(0, /).
® We can optimize (1) using the AEVB algorithm to obtain estimates of 6 and ¢.
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4. Paper #2
Normalizing flows
VI algorithm
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Paper #2: Normalizing flows

® |n paper #1, a Gaussian distribution with diagonal covariance was used as the
approximate posterior.
® How can we obtain a more flexible family of variational distributions?
® Solution: Normalizing flows
¢ Normalizing flows transform simple distributions (e.g. Gaussian) through a sequence of
invertible mappings into rich complex distributions.
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Paper #2: Normalizing flows

® |n paper #1, a Gaussian distribution with diagonal covariance was used as the
approximate posterior.

® How can we obtain a more flexible family of variational distributions?

® Solution: Normalizing flows

¢ Normalizing flows transform simple distributions (e.g. Gaussian) through a sequence of
invertible mappings into rich complex distributions.

Review: Change of variables
Let f : RY — RY be an invertible, smooth function with inverse f ! and z ~ q(z).
Then 2’ = f(z) has the distribution:

of 1y
4(2) = q(2)|det "

)det ‘

18/28



Paper #2: Normalizing flows

Suppose zg ~ qo(zo) and zx = fx o ... fH o fi(zg), where fi,..., fx is a sequence of mappings.
Then the log density of zk is given by

Ofx
log gk (zk ) = log qo(zo) Zlogdet Zk‘
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Paper #2: Normalizing flows

Suppose zg ~ qo(zo) and zx = fx o ... fH o fi(zg), where fi,..., fx is a sequence of mappings.
Then the log density of zk is given by

K
of,
log gk (zk) = log qo(2z0) — Z Iogdet}a—zll‘(‘
k=1

By the law of the unconscious statistician, for any function h,
Eq [h(2)] = Ego[h(fi 0 - -- 0 fi(20))]
® There are many good choices for the sequence of invertible transformations. Paper #2

uses planar and radial flows.
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Paper #2: Normalizing flows

Planar flows are transformations of the form
f(z) = z+uh(w'z + b),

where A = {w € RP u € RP b € R} are free parameters and h is a smooth function with
derivative h'.
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® The logdet-Jacobian term can computed in O(D) time:

|det(l+ ugp(2)')| = 1+ u'y(2)),
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)= Hh(w'z+ b)w

0z
(2
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Planar flows are transformations of the form
f(z) = z+uh(w'z + b),

where A = {w € RP u € RP b € R} are free parameters and h is a smooth function with
derivative h'.

® The logdet-Jacobian term can computed in O(D) time:

|det(l+ ugp(2)')| = 1+ u'y(2)),

det’ ‘
)= Hh(w'z+ b)w

0z
(2

® The log-density of zx = fix o - - - o fi(z), where fx =z + ugh(w),z + by):
K

log gk (zx) = log qo(z) — Y _ log |1 + uthi(z«)),
k=1
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Paper #2: Normalizing flows

Radial flows are transformations of the form:
f(z) =z+ Bh(a, r)(z — zo),
where r = ||z — zo||; h(a,r) =1/(a+r); and A = {zo € RP a € R, 3 € R} are parameters.

® The logdet-Jacobian can also be computed in linear time:

det‘?;‘ = [1+ Bh(a,r)] -1 [1+ Bh(cr, r) + h' (e, r)r]
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Paper #2: Normalizing flows

Planar Radlal

4o K=1 K=2 K_1O
g
: 'y l
g
-r‘v
o.-
£ .
= .
: Q .
---\O~ i =

Figure 1 in Rezende et al. (2015) showing effects planar/radial flows on two distributions.
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Paper #2: Normalizing flows

Flow-based ELBO (negative free energy bound)

Suppose the approximate posterior is parameterized with a (planar) flow of length K
i.e. go(z|x) := gk (zk).

Then the ELBO is given by

£(8,6:X) = Eqy )| — log as(21x) + log p(x,2)]

= Eqo(z0) [ — log gk (zk) + log p(x, ZK)]
K

= —Egy(2) [ 108 q0(20) ]| + Ego(z) [ 108 P(X, 2K )] + Ego(0) [Z log |1+ UWk(Zk)]
1
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Paper #2: Normalizing flows

Flow-based ELBO (negative free energy bound)

Suppose the approximate posterior is parameterized with a (planar) flow of length K
i.e. go(z|x) := gk (zk).

Then the ELBO is given by

£(8,6:X) = Eqy )| — log as(21x) + log p(x,2)]

= Eqo(z0) [ — log gk (zk) + log p(x, ZK)]
K
= —Egy(2) [ 108 q0(20) ]| + Ego(z) [ 108 P(X, 2K )] + Ego(0) [Z log |1+ UWk(Zk)]
—1

® Paper #2 also constructs a recognition model (inference network) using a deep neural
network that maps observations x to the parameters of gg = N(u,0?) and flow
parameters .

® They don't give explicit details about how they do this like paper #1 does.

® |t could be interesting to work out the explicit form of the ELBO here (if time permits). 22



Paper #2: VI algorithm

Algorithm 1 Variational Inf. with Normalizing Flows

Parameters: ¢ variational, 8 generative
while not converged do
x + {Get mini-batch}
zo ~ qo(e|x)
zx <~ fxo fxk_10...0 fi(zo)
F(x) = F(x,2x)

A0 x *Vg]‘-(x)
A¢p x —V 4 F(x)
end while

® Similiar in nature to the AEVB algorithm

® The authors don't make this explicit in the paper MC estimates are still necessary (I
think?)
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5. Comparison of papers
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Comparison of both papers

® Both papers focus on different problems in VI.

® Paper #1 focuses on estimating the ELBO and its gradient.
® Paper #2 focuses on on coming up with a flexible variational family.

® In paper #2, the initial density is go = N(u, c?), where 1 and o are parameterized with
neural networks. This is similiar to paper #1 but they use this as the approximate
posterior, whereas this is transformed through normalizing flows in paper #2.

® Paper #1 gives a specific example where AEVB is applied (VAEs) whereas paper #2
talks about their algorithm more generally.

® Your thoughts?
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6. Related work
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Related work

® Wake-sleep algorithm (Hinton et al. (1995))

® Applicable to same general class of continuous latent variable models as AEVB and also
discrete latent variables.

® Drawback: concurrent optimization of two objective functions # optimization of (a bound
of) the evidence.

¢ Non-linear Independent Components Estimation (NICE) (Dinh et al. (2014))
® Transformations are neural networks with easy to compute inverses
® Hamiltonian variational approx. (HVI) (Salimans et al. (2015))

® infinitesimal volume-preserving flow
® Elegant but not as computationally efficient
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