Machine Learning Reading Group

Presenter: Daniel long

Paper \#1: Auto-encoding Variational Bayes (Kingma et al. (2014)) Paper \#2: Variational Inference with Normalizing Flows (Rezende et al. (2015))

October 1, 2021

Overview

1. Background

Bayesian Inference/Latent variable modeling
Variational Inference
2. Overview of contributions
3. Paper \#1

Reparameterization trick
Stochastic Gradient VB Estimators
Auto-encoding VB Algorithm
Variational Auto-Encoder
4. Paper \#2

Normalizing flows
VI algorithm
5. Comparison of papers
6. Related work

Overview

1. Background

Bayesian Inference/Latent variable modeling Variational Inference
2. Overview of contributions
3. Paper \#1

Reparameterization trick
Stochastic Gradient VB Estimators
Auto-encoding VB Algorithm
Variational Auto-Encoder
4. Paper \#2

Normalizing flows
VI algorithm
5. Comparison of papers
6. Related work

Background: Bayesian Inference/Latent Variable Modeling

Consider a latent variable model of data $\mathbf{x}=\left\{x_{i}\right\}$ and latent variables $\mathbf{z}=\left\{z_{i}\right\}$ with joint density

$$
p(\mathbf{z}, \mathbf{x})=p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) .
$$

Background: Bayesian Inference/Latent Variable Modeling

Consider a latent variable model of data $\mathbf{x}=\left\{x_{i}\right\}$ and latent variables $\mathbf{z}=\left\{z_{i}\right\}$ with joint density

$$
p(\mathbf{z}, \mathbf{x})=p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) .
$$

Example: Gaussian Mixture model

$$
\begin{aligned}
p\left(z_{i}=k\right) & =\pi_{k}, k=1, \ldots, K \\
x_{i} \mid z_{i}=k & \sim N\left(\mu_{k}, \sigma_{k}^{2}\right)
\end{aligned}
$$

Background: Bayesian Inference/Latent Variable Modeling

Consider a latent variable model of data $\mathbf{x}=\left\{x_{i}\right\}$ and latent variables $\mathbf{z}=\left\{z_{i}\right\}$ with joint density

$$
p(\mathbf{z}, \mathbf{x})=p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) .
$$

Example: Gaussian Mixture model

$$
\begin{aligned}
p\left(z_{i}=k\right) & =\pi_{k}, k=1, \ldots, K \\
x_{i} \mid z_{i}=k & \sim N\left(\mu_{k}, \sigma_{k}^{2}\right)
\end{aligned}
$$

Objective: Compute/sample from the posterior distribution $p_{\theta}(\mathbf{z} \mid \mathbf{x})=\frac{p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})}{p(\mathbf{x})}$.

- $p(\mathbf{x})$ is usually difficult/impossible to compute.

Background: Bayesian Inference/Latent Variable Modeling

Consider a latent variable model of data $\mathbf{x}=\left\{x_{i}\right\}$ and latent variables $\mathbf{z}=\left\{z_{i}\right\}$ with joint density

$$
p(\mathbf{z}, \mathbf{x})=p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) .
$$

Example: Gaussian Mixture model

$$
\begin{aligned}
p\left(z_{i}=k\right) & =\pi_{k}, k=1, \ldots, K \\
x_{i} \mid z_{i}=k & \sim N\left(\mu_{k}, \sigma_{k}^{2}\right)
\end{aligned}
$$

Objective: Compute/sample from the posterior distribution $p_{\theta}(\mathbf{z} \mid \mathbf{x})=\frac{p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})}{p(\mathbf{x})}$.

- $p(\mathbf{x})$ is usually difficult/impossible to compute.

Two solutions

1. MCMC: Construct an ergodic Markov chain whose stationary distribution is $p_{\theta}(\mathbf{z} \mid \mathbf{x})$.

Background: Bayesian Inference/Latent Variable Modeling

Consider a latent variable model of data $\mathbf{x}=\left\{x_{i}\right\}$ and latent variables $\mathbf{z}=\left\{z_{i}\right\}$ with joint density

$$
p(\mathbf{z}, \mathbf{x})=p(\mathbf{z}) p(\mathbf{x} \mid \mathbf{z}) .
$$

Example: Gaussian Mixture model

$$
\begin{aligned}
p\left(z_{i}=k\right) & =\pi_{k}, k=1, \ldots, K \\
x_{i} \mid z_{i}=k & \sim N\left(\mu_{k}, \sigma_{k}^{2}\right)
\end{aligned}
$$

Objective: Compute/sample from the posterior distribution $p_{\theta}(\mathbf{z} \mid \mathbf{x})=\frac{p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})}{p(\mathbf{x})}$.

- $p(\mathbf{x})$ is usually difficult/impossible to compute.

Two solutions

1. MCMC: Construct an ergodic Markov chain whose stationary distribution is $p_{\theta}(\mathbf{z} \mid \mathbf{x})$.
2. Variational Inference (VI): Compute an approximation of $p_{\theta}(\mathbf{z} \mid \mathbf{x})$ by optimizing over a family of approx. distributions.

Background: Variational Inference

Objective: Obtain approximate posterior (or recognition model)

$$
q_{\phi}^{*}(\mathbf{z} \mid \mathbf{x})=\underset{q \in \mathcal{Q}}{\arg \min } D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z} \mid \mathbf{x})\right),
$$

- \mathcal{Q} is a (specified) variational family (e.g. mean-field)
- ϕ contain the variational parameters; θ contain the model parameters.

Background: Variational Inference

Objective: Obtain approximate posterior (or recognition model)

$$
q_{\phi}^{*}(\mathbf{z} \mid \mathbf{x})=\underset{q \in \mathcal{Q}}{\arg \min } D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z} \mid \mathbf{x})\right),
$$

- \mathcal{Q} is a (specified) variational family (e.g. mean-field)
- ϕ contain the variational parameters; θ contain the model parameters.

KL Divergence:

$$
D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z} \mid \mathbf{x})\right):=\int \log \left(\frac{q_{\phi}(\mathbf{z} \mid \mathbf{x})}{p_{\theta}(\mathbf{z} \mid \mathbf{x})}\right) q_{\phi}(\mathbf{z} \mid \mathbf{x}) d \mathbf{z}=E_{q}\left[\log \frac{q_{\phi}(\mathbf{Z} \mid \mathbf{x})}{p_{\theta}(\mathbf{Z} \mid \mathbf{x})}\right]
$$

Background: Variational Inference

Objective: Obtain approximate posterior (or recognition model)

$$
q_{\phi}^{*}(\mathbf{z} \mid \mathbf{x})=\underset{q \in \mathcal{Q}}{\arg \min } D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z} \mid \mathbf{x})\right),
$$

- \mathcal{Q} is a (specified) variational family (e.g. mean-field)
- ϕ contain the variational parameters; θ contain the model parameters.

KL Divergence:

$$
D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z} \mid \mathbf{x})\right):=\int \log \left(\frac{q_{\phi}(\mathbf{z} \mid \mathbf{x})}{p_{\theta}(\mathbf{z} \mid \mathbf{x})}\right) q_{\phi}(\mathbf{z} \mid \mathbf{x}) d \mathbf{z}=E_{q}\left[\log \frac{q_{\phi}(\mathbf{Z} \mid \mathbf{x})}{p_{\theta}(\mathbf{Z} \mid \mathbf{x})}\right]
$$

- Asymmetric: $D_{K L}(q \| p)$ (exclusive $\left.K L\right) \neq D_{K L}(p \| q)$ (inclusive $K L$).
- VI chooses to optimize $D_{K L}(q \| p) \mathrm{b} / \mathrm{c}$ it's easier to take expectations w.r.t. q.
- There's existing work about optimizing $D_{K L}(p \| q)$ (Markovian score climbing).
- Exclusive KL: $q(x)>0 \Rightarrow p(x)>0$

Background: Variational Inference

- The marginal likelihood (evidence) $p(\mathbf{x})$ can be expressed as

$$
\log p_{\theta}(\mathbf{x})=D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z} \mid \mathbf{x})\right)+\underbrace{E_{q}\left[-\log q_{\phi}(\mathbf{z} \mid \mathbf{x})+\log p_{\theta}(\mathbf{x}, \mathbf{z})\right]}_{\mathcal{L}(\theta, \phi ; \mathbf{x})} \geq \mathcal{L}(\theta, \phi ; \mathbf{x})
$$

where $\mathcal{L}(\theta, \phi ; \mathbf{x})$ is the evidence lower bound (ELBO) which can also be written as

$$
\mathcal{L}(\theta, \phi ; \mathbf{x})=-D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z})\right)+E_{q}\left[\log p_{\theta}(\mathbf{x} \mid \mathbf{z})\right]
$$

Background: Variational Inference

- The marginal likelihood (evidence) $p(\mathbf{x})$ can be expressed as

$$
\log p_{\theta}(\mathbf{x})=D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z} \mid \mathbf{x})\right)+\underbrace{E_{q}\left[-\log q_{\phi}(\mathbf{z} \mid \mathbf{x})+\log p_{\theta}(\mathbf{x}, \mathbf{z})\right]}_{\mathcal{L}(\theta, \phi ; \mathbf{x})} \geq \mathcal{L}(\theta, \phi ; \mathbf{x})
$$

where $\mathcal{L}(\theta, \phi ; \mathbf{x})$ is the evidence lower bound (ELBO) which can also be written as

$$
\mathcal{L}(\theta, \phi ; \mathbf{x})=-D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z})\right)+E_{q}\left[\log p_{\theta}(\mathbf{x} \mid \mathbf{z})\right]
$$

- Goal: Optimize $\mathcal{L}(\theta, \phi ; \mathbf{x})$ w.r.t. both ϕ and θ.

Background: Variational Inference

- The marginal likelihood (evidence) $p(\mathbf{x})$ can be expressed as

$$
\log p_{\theta}(\mathbf{x})=D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z} \mid \mathbf{x})\right)+\underbrace{E_{q}\left[-\log q_{\phi}(\mathbf{z} \mid \mathbf{x})+\log p_{\theta}(\mathbf{x}, \mathbf{z})\right]}_{\mathcal{L}(\theta, \phi ; \mathbf{x})} \geq \mathcal{L}(\theta, \phi ; \mathbf{x})
$$

where $\mathcal{L}(\theta, \phi ; \mathbf{x})$ is the evidence lower bound (ELBO) which can also be written as

$$
\mathcal{L}(\theta, \phi ; \mathbf{x})=-D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z})\right)+E_{q}\left[\log p_{\theta}(\mathbf{x} \mid \mathbf{z})\right]
$$

- Goal: Optimize $\mathcal{L}(\theta, \phi ; \mathbf{x})$ w.r.t. both ϕ and θ.
- Optimizing w.r.t. θ is easy
- Unbiased gradient estimates are straightforward to obtain.

Background: Variational Inference

- The marginal likelihood (evidence) $p(\mathbf{x})$ can be expressed as

$$
\log p_{\theta}(\mathbf{x})=D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z} \mid \mathbf{x})\right)+\underbrace{E_{q}\left[-\log q_{\phi}(\mathbf{z} \mid \mathbf{x})+\log p_{\theta}(\mathbf{x}, \mathbf{z})\right]}_{\mathcal{L}(\theta, \phi ; \mathbf{x})} \geq \mathcal{L}(\theta, \phi ; \mathbf{x})
$$

where $\mathcal{L}(\theta, \phi ; \mathbf{x})$ is the evidence lower bound (ELBO) which can also be written as

$$
\mathcal{L}(\theta, \phi ; \mathbf{x})=-D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z})\right)+E_{q}\left[\log p_{\theta}(\mathbf{x} \mid \mathbf{z})\right]
$$

- Goal: Optimize $\mathcal{L}(\theta, \phi ; \mathbf{x})$ w.r.t. both ϕ and θ.
- Optimizing w.r.t. θ is easy
- Unbiased gradient estimates are straightforward to obtain.
- Optimizing w.r.t. ϕ is harder.
- Expectations in the ELBO are taken w.r.t. $q_{\phi}(\mathbf{z} \mid \mathbf{x})$, which is a function of ϕ.
- Reparameterization trick is useful here.

Overview

1. Background

Bayesian Inference/Latent variable modeling Variational Inference
2. Overview of contributions
3. Paper \#1

Reparameterization trick
Stochastic Gradient VB Estimators
Auto-encoding VB Algorithm
Variational Auto-Encoder
4. Paper \#2

Normalizing flows
VI algorithm
5. Comparison of papers
6. Related work

Overview of contributions

Paper \#1: Auto-encoding Variational Bayes (Kingma et al. 2014)

- Two significant contributions

1. SGVB estimator + AEVB algorithm
2. Variational Auto-encoders (VAEs)

Overview of contributions

Paper \#1: Auto-encoding Variational Bayes (Kingma et al. 2014)

- Two significant contributions

1. SGVB estimator + AEVB algorithm
2. Variational Auto-encoders (VAEs)

Paper \#2: Variational Inference with Normalizing Flows (Rezende et al. 2015)

- Provides a rich, computationally-feasible approximate posterior using normalizing flows.
- In the asymptotic regime, the space of solutions is rich enough to contain the true posterior distribution.
- Uses gradient estimator from Paper \#1 (amortized VI).

Overview of contributions

Paper \#1: Auto-encoding Variational Bayes (Kingma et al. 2014)

- Two significant contributions

1. SGVB estimator + AEVB algorithm
2. Variational Auto-encoders (VAEs)

Paper \#2: Variational Inference with Normalizing Flows (Rezende et al. 2015)

- Provides a rich, computationally-feasible approximate posterior using normalizing flows.
- In the asymptotic regime, the space of solutions is rich enough to contain the true posterior distribution.
- Uses gradient estimator from Paper \#1 (amortized VI).

Topics I will not cover:

- Experiments/empirical results
- infinitesimal flows

Overview

```
1. Background
    Bayesian Inference/Latent variable modeling
    Variational Inference
2. Overview of contributions
3. Paper #1
Reparameterization trick
Stochastic Gradient VB Estimators
Auto-encoding VB Algorithm
Variational Auto-Encoder
4. Paper #2
Normalizing flows
VI algorithm
5. Comparison of papers
6. Related work
```


Paper \#1: Reparameterization Trick

Suppose $\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})$. Then, it is often possible to express \mathbf{z} as

$$
\mathbf{z}=g_{\phi}(\epsilon, \mathbf{x}),
$$

where $\epsilon \sim p(\epsilon)$ (a distribution that doesn't depend on ϕ).
Example: Suppose $z \sim N\left(\mu, \sigma^{2}\right)$. Then $z=\mu+\sigma \epsilon$, where $\epsilon \sim N(0,1)$.

Paper \#1: Reparameterization Trick

Suppose $\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})$. Then, it is often possible to express \mathbf{z} as

$$
\mathbf{z}=g_{\phi}(\epsilon, \mathbf{x}),
$$

where $\epsilon \sim p(\epsilon)$ (a distribution that doesn't depend on ϕ).
Example: Suppose $z \sim N\left(\mu, \sigma^{2}\right)$. Then $z=\mu+\sigma \epsilon$, where $\epsilon \sim N(0,1)$.

Why is it useful?

- In general, for a differentiable function f,

$$
\nabla_{\phi} E_{q_{\phi}}[f(\mathbf{z})] \neq E_{q_{\phi}}\left[\nabla_{\phi} f(\mathbf{z})\right]
$$

Paper \#1: Reparameterization Trick

Suppose $\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})$. Then, it is often possible to express \mathbf{z} as

$$
\mathbf{z}=g_{\phi}(\epsilon, \mathbf{x}),
$$

where $\epsilon \sim p(\epsilon)$ (a distribution that doesn't depend on ϕ).
Example: Suppose $z \sim N\left(\mu, \sigma^{2}\right)$. Then $z=\mu+\sigma \epsilon$, where $\epsilon \sim N(0,1)$.

Why is it useful?

- In general, for a differentiable function f,

$$
\nabla_{\phi} E_{q_{\phi}}[f(\mathbf{z})] \neq E_{q_{\phi}}\left[\nabla_{\phi} f(\mathbf{z})\right]
$$

- However, with the reparameterization trick,

$$
\begin{aligned}
\nabla_{\phi} E_{q_{\phi}}[f(\mathbf{z})] & =\nabla_{\phi} E_{p(\epsilon)}\left[f\left(g_{\phi}(\epsilon, \mathbf{x})\right)\right] \\
& =E_{p(\epsilon)}\left[\nabla_{\phi} f\left(g_{\phi}(\epsilon, \mathbf{x})\right)\right] \\
& \approx \frac{1}{L} \sum_{I=1}^{L} f\left(g_{\phi}\left(\epsilon^{(I)}, \mathbf{x}\right)\right), \text { where } \epsilon^{(I)} \sim p(\epsilon)
\end{aligned}
$$

Paper \#1: Reparameterization Trick

Illustration of reparameterization trick from Kingma (2017).

Paper \#1: Stochastic Gradient Variational Bayes Estimators

Using the reparameterization trick, a generic SGVB estimator of the ELBO is given by

$$
\tilde{\mathcal{L}}^{A}(\theta, \phi ; \mathbf{x})=\frac{1}{L} \sum_{I=1}^{L}\left[\log p_{\theta}\left(\mathbf{x}, \mathbf{z}^{(/)}\right)-\log q_{\phi}\left(\mathbf{z}^{(/)} \mid \mathbf{x}\right)\right],
$$

where $\mathbf{z}^{(I)}=g_{\phi}\left(\epsilon^{(I)}, \mathbf{x}\right)$ and $\epsilon^{(I)} \sim p(\epsilon)$, for $I=1, \ldots, L$.

Paper \#1: Stochastic Gradient Variational Bayes Estimators

Using the reparameterization trick, a generic SGVB estimator of the ELBO is given by

$$
\tilde{\mathcal{L}}^{A}(\theta, \phi ; \mathbf{x})=\frac{1}{L} \sum_{l=1}^{L}\left[\log p_{\theta}\left(\mathbf{x}, \mathbf{z}^{(I)}\right)-\log q_{\phi}\left(\mathbf{z}^{(I)} \mid \mathbf{x}\right)\right]
$$

where $\mathbf{z}^{(I)}=g_{\phi}\left(\epsilon^{(I)}, \mathbf{x}\right)$ and $\epsilon^{(I)} \sim p(\epsilon)$, for $I=1, \ldots, L$.
When $D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z})\right)$ can be computed analytically (e.g. Gaussian case),

$$
\tilde{\mathcal{L}}^{B}(\theta, \phi ; \mathbf{x})=-D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z})\right)+\frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}\left(\mathbf{x} \mid \mathbf{z}^{(/)}\right)
$$

- $\tilde{\mathcal{L}}^{B}$ typically has less variance than $\tilde{\mathcal{L}}^{A}$.

Paper \#1: Auto-Encoding Variational Bayes Algorithm

```
Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in section 2.3 can be used. We use settings \(M=100\) and \(L=1\) in experiments.
    \(\boldsymbol{\theta}, \phi \leftarrow\) Initialize parameters
    repeat
        \(\mathbf{X}^{M} \leftarrow\) Random minibatch of \(M\) datapoints (drawn from full dataset)
        \(\boldsymbol{\epsilon} \leftarrow\) Random samples from noise distribution \(p(\boldsymbol{\epsilon})\)
        \(\mathrm{g} \leftarrow \nabla_{\boldsymbol{\theta}, \phi} \widetilde{\mathcal{L}}^{M}\left(\boldsymbol{\theta}, \boldsymbol{\phi} ; \mathbf{X}^{M}, \boldsymbol{\epsilon}\right)\) (Gradients of minibatch estimator (8))
        \(\boldsymbol{\theta}, \boldsymbol{\phi} \leftarrow\) Update parameters using gradients \(\mathbf{g}\) (e.g. SGD or Adagrad [DHS10])
    until convergence of parameters \((\boldsymbol{\theta}, \boldsymbol{\phi})\)
    return \(\theta, \phi\)
```

The mini-batch estimator $\tilde{\mathcal{L}}^{M}$ is given by

$$
\tilde{\mathcal{L}}^{M}\left(\theta, \phi ; X^{M}\right)=\frac{N}{M} \sum_{i=1}^{M} \tilde{\mathcal{L}}(\theta, \phi ; \mathbf{x})
$$

Paper \#1: Auto-Encoding Variational Bayes Algorithm

How is it related to auto-encoders?
An autoencoder is a neural network used for unsupervised learning that minimizes an objective function with the form: reconstruction error + regularizer.

Recall:

$$
\tilde{\mathcal{L}}^{B}(\theta, \phi ; \mathbf{x})=\underbrace{-D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p_{\theta}(\mathbf{z})\right)}_{\text {regularizer }}+\underbrace{\frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}\left(\mathbf{x} \mid \mathbf{z}^{(/)}\right)}_{\text {Negative reconstruction error }}
$$

Paper \#1: Variational Auto-Encoder

VAEs are given as an example but AFAIK, this is the original paper that introduced them.
Assume \mathbf{x}, \mathbf{z} are continuous.
Decoder (generative model)

$$
\begin{aligned}
& p(\mathbf{z})=N(\mathbf{z} ; 0, l) \\
& p(\mathbf{x} \mid \mathbf{z})=N\left(\mathbf{x} ; \mu, \sigma^{2} I\right) \\
& \mu=W_{2} h+b_{2} \\
& \log \sigma^{2}=W_{3} h+b_{3} \\
& h=\tanh \left(W_{1} \mathbf{z}+b_{1}\right) \\
& \theta=\left\{W_{j}, b_{j}: j=1,2,3\right\}, \phi=\left\{\tilde{W}_{j}, \tilde{b}_{j}: j=1,2,3\right\}
\end{aligned}
$$

Encoder (inference model)

$$
\begin{aligned}
q_{\phi}(\mathbf{z} \mid \mathbf{x}) & =N\left(\mathbf{z} ; \tilde{\mu}, \tilde{\sigma}^{2} l\right) \\
\tilde{h} & =\tanh \left(\tilde{W}_{1} \mathbf{x}+\tilde{b}_{1}\right) \\
\tilde{\mu} & =\tilde{W}_{1} \tilde{h}+\tilde{b}_{2} \\
\log \tilde{\sigma}^{2} & =\tilde{W}_{3} \tilde{h}+\tilde{b}_{3}
\end{aligned}
$$

Paper \#1: Variational Auto-Encoder

VAEs are given as an example but AFAIK, this is the original paper that introduced them.
Assume \mathbf{x}, \mathbf{z} are continuous.
Decoder (generative model)

$$
\begin{aligned}
p(\mathbf{z}) & =N(\mathbf{z} ; 0, I) \\
p(\mathbf{x} \mid \mathbf{z}) & =N\left(\mathbf{x} ; \mu, \sigma^{2} I\right) \\
\mu & =W_{2} h+b_{2} \\
\log \sigma^{2} & =W_{3} h+b_{3} \\
h & =\tanh \left(W_{1} \mathbf{z}+b_{1}\right)
\end{aligned}
$$

$$
\theta=\left\{W_{j}, b_{j}: j=1,2,3\right\}, \phi=\left\{\tilde{W}_{j}, \tilde{b}_{j}: j=1,2,3\right\}
$$

- VAEs are a non-linear generalization of probabilistic PCA, where $\mu=\mathbf{W z}$.
- In this case, the evidence has an analytical form: $p(\mathbf{x})=N\left(0, \mathbf{W W}^{\prime}+\sigma^{2} I\right)$.

Paper \#1: Variational Auto-Encoder

VAEs are given as an example but AFAIK, this is the original paper that introduced them.
Assume \mathbf{x}, \mathbf{z} are continuous.
Decoder (generative model)

$$
\begin{aligned}
p(\mathbf{z}) & =N(\mathbf{z} ; 0, I) \\
p(\mathbf{x} \mid \mathbf{z}) & =N\left(\mathbf{x} ; \mu, \sigma^{2} I\right) \\
\mu & =W_{2} h+b_{2} \\
\log \sigma^{2} & =W_{3} h+b_{3} \\
h & =\tanh \left(W_{1} \mathbf{z}+b_{1}\right)
\end{aligned}
$$

$$
\theta=\left\{W_{j}, b_{j}: j=1,2,3\right\}, \phi=\left\{\tilde{W}_{j}, \tilde{b}_{j}: j=1,2,3\right\}
$$

- VAEs are a non-linear generalization of probabilistic PCA, where $\mu=\mathbf{W z}$.
- In this case, the evidence has an analytical form: $p(\mathbf{x})=N\left(0, \mathbf{W W}^{\prime}+\sigma^{2} I\right)$.

To sample from $q_{\phi}(\mathbf{z} \mid \mathbf{x})$,

1. Sample $\epsilon^{(\ell)} \sim N(0, I), \ell=1, \ldots, L$
2. Compute $\mathbf{z}^{(\ell)}=\tilde{\mu}+\tilde{\sigma} \odot \epsilon^{(\ell)}$, where \odot denotes element-wise product.

Paper \#1: Variational Auto-Encoder

In the case where $p(\mathbf{z})$ and $q_{\phi}(\mathbf{z} \mid \mathbf{x})$ are Gaussian, $-D_{K L}\left(q_{\phi}(\mathbf{z} \| \mathbf{x}) \| p(\mathbf{z})\right)$ can be computed analytically.

$$
-D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z})\right)=\frac{1}{2} \sum_{j=1}^{J}\left[1+\log \left(\tilde{\sigma}_{j}^{2}\right)-\tilde{\mu}_{j}^{2}-\tilde{\sigma}_{j}^{2}\right]
$$

Paper \#1: Variational Auto-Encoder

In the case where $p(\mathbf{z})$ and $q_{\phi}(\mathbf{z} \mid \mathbf{x})$ are Gaussian, $-D_{K L}\left(q_{\phi}(\mathbf{z} \| \mathbf{x}) \| p(\mathbf{z})\right)$ can be computed analytically.

$$
-D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z})\right)=\frac{1}{2} \sum_{j=1}^{J}\left[1+\log \left(\tilde{\sigma}_{j}^{2}\right)-\tilde{\mu}_{j}^{2}-\tilde{\sigma}_{j}^{2}\right]
$$

The SGVB estimator for VAEs is given by,

$$
\begin{equation*}
\tilde{\mathcal{L}}^{B}(\theta, \phi ; \mathbf{x})=-D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z})\right)+\frac{1}{L} \sum_{\ell=1}^{L} \log p_{\theta}\left(\mathbf{x} \mid \mathbf{z}^{(\ell)}\right) \tag{1}
\end{equation*}
$$

where $\mathbf{z}^{(\ell)}=\tilde{\mu}+\tilde{\sigma} \odot \epsilon^{(\ell)}$ and $\epsilon^{(\ell)} \sim N(0, I)$.

Paper \#1: Variational Auto-Encoder

In the case where $p(\mathbf{z})$ and $q_{\phi}(\mathbf{z} \mid \mathbf{x})$ are Gaussian, $-D_{K L}\left(q_{\phi}(\mathbf{z} \| \mathbf{x}) \| p(\mathbf{z})\right)$ can be computed analytically.

$$
-D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z})\right)=\frac{1}{2} \sum_{j=1}^{J}\left[1+\log \left(\tilde{\sigma}_{j}^{2}\right)-\tilde{\mu}_{j}^{2}-\tilde{\sigma}_{j}^{2}\right]
$$

The SGVB estimator for VAEs is given by,

$$
\begin{equation*}
\tilde{\mathcal{L}}^{B}(\theta, \phi ; \mathbf{x})=-D_{K L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z})\right)+\frac{1}{L} \sum_{\ell=1}^{L} \log p_{\theta}\left(\mathbf{x} \mid \mathbf{z}^{(\ell)}\right) \tag{1}
\end{equation*}
$$

where $\mathbf{z}^{(\ell)}=\tilde{\mu}+\tilde{\sigma} \odot \epsilon^{(\ell)}$ and $\epsilon^{(\ell)} \sim N(0, I)$.

- We can optimize (1) using the AEVB algorithm to obtain estimates of θ and ϕ.

Overview

1. Background

Bayesian Inference/Latent variable modeling

Variational Inference

2. Overview of contributions
3. Paper $\# 1$

Reparameterization trick
Stochastic Gradient VB Estimators
Auto-encoding VB Algorithm
Variational Auto-Encoder
4. Paper \#2

Normalizing flows
VI algorithm
5. Comparison of papers
6. Related work

Paper \#2: Normalizing flows

- In paper \#1, a Gaussian distribution with diagonal covariance was used as the approximate posterior.
- How can we obtain a more flexible family of variational distributions?
- Solution: Normalizing flows
- Normalizing flows transform simple distributions (e.g. Gaussian) through a sequence of invertible mappings into rich complex distributions.

Paper \#2: Normalizing flows

- In paper \#1, a Gaussian distribution with diagonal covariance was used as the approximate posterior.
- How can we obtain a more flexible family of variational distributions?
- Solution: Normalizing flows
- Normalizing flows transform simple distributions (e.g. Gaussian) through a sequence of invertible mappings into rich complex distributions.

Review: Change of variables
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be an invertible, smooth function with inverse f^{-1} and $\mathbf{z} \sim q(\mathbf{z})$.
Then $\mathbf{z}^{\prime}=f(\mathbf{z})$ has the distribution:

$$
q\left(\mathbf{z}^{\prime}\right)=q(\mathbf{z})\left|\operatorname{det} \frac{\partial f^{-1}}{\partial \mathbf{z}^{\prime}}\right|=q(\mathbf{z})\left|\operatorname{det} \frac{\partial f}{\partial \mathbf{z}}\right|^{-1}
$$

Paper \#2: Normalizing flows

Suppose $\mathbf{z}_{0} \sim q_{0}\left(\mathbf{z}_{0}\right)$ and $\mathbf{z}_{K}=f_{K} \circ \ldots f_{2} \circ f_{1}\left(\mathbf{z}_{0}\right)$, where f_{1}, \ldots, f_{K} is a sequence of mappings. Then the \log density of \mathbf{z}_{K} is given by

$$
\log q_{K}\left(\mathbf{z}_{K}\right)=\log q_{0}\left(\mathbf{z}_{0}\right)-\sum_{k=1}^{K} \log \operatorname{det}\left|\frac{\partial f_{k}}{\partial \mathbf{z}_{k}}\right|
$$

Paper \#2: Normalizing flows

Suppose $\mathbf{z}_{0} \sim q_{0}\left(\mathbf{z}_{0}\right)$ and $\mathbf{z}_{K}=f_{K} \circ \ldots f_{2} \circ f_{1}\left(\mathbf{z}_{0}\right)$, where f_{1}, \ldots, f_{K} is a sequence of mappings. Then the \log density of \mathbf{z}_{K} is given by

$$
\log q_{K}\left(\mathbf{z}_{K}\right)=\log q_{0}\left(\mathbf{z}_{0}\right)-\sum_{k=1}^{K} \log \operatorname{det}\left|\frac{\partial f_{k}}{\partial \mathbf{z}_{k}}\right|
$$

By the law of the unconscious statistician, for any function h,

$$
E_{q_{K}}[h(\mathbf{z})]=E_{q_{0}}\left[h\left(f_{K} \circ \cdots \circ f_{1}\left(\mathbf{z}_{0}\right)\right)\right]
$$

- There are many good choices for the sequence of invertible transformations. Paper \#2 uses planar and radial flows.

Paper \#2: Normalizing flows

Planar flows are transformations of the form

$$
f(\mathbf{z})=\mathbf{z}+\mathbf{u} h\left(\mathbf{w}^{\prime} \mathbf{z}+b\right)
$$

where $\lambda=\left\{\mathbf{w} \in \mathbb{R}^{D}, \mathbf{u} \in \mathbb{R}^{D}, b \in \mathbb{R}\right\}$ are free parameters and h is a smooth function with derivative h^{\prime}.

Paper \#2: Normalizing flows

Planar flows are transformations of the form

$$
f(\mathbf{z})=\mathbf{z}+\mathbf{u} h\left(\mathbf{w}^{\prime} \mathbf{z}+b\right)
$$

where $\lambda=\left\{\mathbf{w} \in \mathbb{R}^{D}, \mathbf{u} \in \mathbb{R}^{D}, b \in \mathbb{R}\right\}$ are free parameters and h is a smooth function with derivative h^{\prime}.

- The logdet-Jacobian term can computed in $O(D)$ time:

$$
\begin{aligned}
\operatorname{det}\left|\frac{\partial f}{\partial \mathbf{z}}\right| & =\left|\operatorname{det}\left(\mathbf{I}+\mathbf{u} \psi(\mathbf{z})^{\prime}\right)\right|=\left|1+\mathbf{u}^{\prime} \psi(\mathbf{z})\right|, \\
\psi(\mathbf{z}) & =h^{\prime}\left(\mathbf{w}^{\prime} \mathbf{z}+b\right) \mathbf{w} .
\end{aligned}
$$

Paper \#2: Normalizing flows

Planar flows are transformations of the form

$$
f(\mathbf{z})=\mathbf{z}+\mathbf{u} h\left(\mathbf{w}^{\prime} \mathbf{z}+b\right)
$$

where $\lambda=\left\{\mathbf{w} \in \mathbb{R}^{D}, \mathbf{u} \in \mathbb{R}^{D}, b \in \mathbb{R}\right\}$ are free parameters and h is a smooth function with derivative h^{\prime}.

- The logdet-Jacobian term can computed in $O(D)$ time:

$$
\begin{aligned}
\operatorname{det}\left|\frac{\partial f}{\partial \mathbf{z}}\right| & =\left|\operatorname{det}\left(\mathbf{I}+\mathbf{u} \psi(\mathbf{z})^{\prime}\right)\right|=\left|1+\mathbf{u}^{\prime} \psi(\mathbf{z})\right|, \\
\psi(\mathbf{z}) & =h^{\prime}\left(\mathbf{w}^{\prime} \mathbf{z}+b\right) \mathbf{w} .
\end{aligned}
$$

- The log-density of $z_{K}=f_{K} \circ \cdots \circ f_{1}(\mathbf{z})$, where $f_{k}=\mathbf{z}+\mathbf{u}_{k} h\left(\mathbf{w}_{k}^{\prime} \mathbf{z}+b_{k}\right)$:

$$
\log q_{K}\left(\mathbf{z}_{K}\right)=\log q_{0}(\mathbf{z})-\sum_{k=1}^{K} \log \left|1+\mathbf{u}_{k}^{\prime} \psi_{k}\left(\mathbf{z}_{k}\right)\right|
$$

Paper \#2: Normalizing flows

Radial flows are transformations of the form:

$$
f(\mathbf{z})=\mathbf{z}+\beta h(\alpha, r)\left(\mathbf{z}-\mathbf{z}_{0}\right),
$$

where $r=\left\|\mathbf{z}-\mathbf{z}_{0}\right\| ; h(\alpha, r)=1 /(\alpha+r)$; and $\lambda=\left\{\mathbf{z}_{0} \in \mathbb{R}^{D}, \alpha \in \mathbb{R}, \beta \in \mathbb{R}\right\}$ are parameters.

- The logdet-Jacobian can also be computed in linear time:

$$
\operatorname{det}\left|\frac{\partial f}{\partial \mathbf{z}}\right|=[1+\beta h(\alpha, r)]^{d-1}\left[1+\beta h(\alpha, r)+h^{\prime}(\alpha, r) r\right]
$$

Paper \#2: Normalizing flows

Figure 1 in Rezende et al. (2015) showing effects planar/radial flows on two distributions.

Paper \#2: Normalizing flows

Flow-based ELBO (negative free energy bound)
Suppose the approximate posterior is parameterized with a (planar) flow of length K i.e. $q_{\phi}(\mathbf{z} \mid \mathbf{x}):=q_{K}\left(\mathbf{z}_{K}\right)$.

Then the ELBO is given by

$$
\begin{aligned}
\mathcal{L}(\theta, \phi ; \mathbf{x}) & =E_{q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[-\log q_{\phi}(\mathbf{z} \mid \mathbf{x})+\log p(\mathbf{x}, \mathbf{z})\right] \\
& =E_{q_{0}\left(z_{0}\right)}\left[-\log q_{K}\left(\mathbf{z}_{K}\right)+\log p\left(\mathbf{x}, \mathbf{z}_{K}\right)\right] \\
& =-E_{q_{0}\left(z_{0}\right)}\left[\log q_{0}\left(z_{0}\right)\right]+E_{q_{0}\left(z_{0}\right)}\left[\log p\left(\mathbf{x}, \mathbf{z}_{K}\right)\right]+E_{q_{0}\left(z_{0}\right)}\left[\sum_{k=1}^{K} \log \mid 1+\mathbf{u}_{k}^{\prime} \psi_{k}\left(\mathbf{z}_{k}\right)\right]
\end{aligned}
$$

Paper \#2: Normalizing flows

Flow-based ELBO (negative free energy bound)
Suppose the approximate posterior is parameterized with a (planar) flow of length K i.e. $q_{\phi}(\mathbf{z} \mid \mathbf{x}):=q_{K}\left(\mathbf{z}_{K}\right)$.

Then the ELBO is given by

$$
\begin{aligned}
\mathcal{L}(\theta, \phi ; \mathbf{x}) & =E_{q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[-\log q_{\phi}(\mathbf{z} \mid \mathbf{x})+\log p(\mathbf{x}, \mathbf{z})\right] \\
& =E_{q_{0}\left(z_{0}\right)}\left[-\log q_{K}\left(\mathbf{z}_{K}\right)+\log p\left(\mathbf{x}, \mathbf{z}_{K}\right)\right] \\
& =-E_{q_{0}\left(z_{0}\right)}\left[\log q_{0}\left(z_{0}\right)\right]+E_{q_{0}\left(z_{0}\right)}\left[\log p\left(\mathbf{x}, \mathbf{z}_{K}\right)\right]+E_{q_{0}\left(z_{0}\right)}\left[\sum_{k=1}^{K} \log \mid 1+\mathbf{u}_{k}^{\prime} \psi_{k}\left(\mathbf{z}_{k}\right)\right]
\end{aligned}
$$

- Paper \#2 also constructs a recognition model (inference network) using a deep neural network that maps observations x to the parameters of $q_{0}=N\left(\mu, \sigma^{2}\right)$ and flow parameters λ.
- They don't give explicit details about how they do this like paper \#1 does.
- It could be interesting to work out the explicit form of the ELBO here (if time permits).

Paper \#2: VI algorithm

```
Algorithm 1 Variational Inf. with Normalizing Flows
    Parameters: \(\phi\) variational, \(\boldsymbol{\theta}\) generative
    while not converged do
        \(\mathbf{x} \leftarrow\{\) Get mini-batch \(\}\)
        \(\mathbf{z}_{0} \sim q_{0}(\bullet \mid \mathbf{x})\)
        \(\mathbf{z}_{K} \leftarrow f_{K} \circ f_{K-1} \circ \ldots \circ f_{1}\left(\mathbf{z}_{0}\right)\)
        \(\mathcal{F}(\mathbf{x}) \approx \mathcal{F}\left(\mathbf{x}, \mathbf{z}_{K}\right)\)
        \(\Delta \boldsymbol{\theta} \propto-\nabla_{\theta} \mathcal{F}(\mathbf{x})\)
        \(\Delta \phi \propto-\nabla_{\phi} \mathcal{F}(\mathrm{x})\)
    end while
```

- Similiar in nature to the AEVB algorithm
- The authors don't make this explicit in the paper MC estimates are still necessary (I think?)

Overview

1. Background

Bayesian Inference/Latent variable modeling Variational Inference
2. Overview of contributions
3. Paper \#1

Reparameterization trick
Stochastic Gradient VB Estimators
Auto-encoding VB Algorithm
Variational Auto-Encoder
4. Paper \#2

Normalizing flows
VI algorithm
5. Comparison of papers
6. Related work

Comparison of both papers

- Both papers focus on different problems in VI.
- Paper \#1 focuses on estimating the ELBO and its gradient.
- Paper \#2 focuses on on coming up with a flexible variational family.
- In paper $\# 2$, the initial density is $q_{0}=N\left(\mu, \sigma^{2}\right)$, where μ and σ are parameterized with neural networks. This is similiar to paper \#1 but they use this as the approximate posterior, whereas this is transformed through normalizing flows in paper \#2.
- Paper \#1 gives a specific example where AEVB is applied (VAEs) whereas paper \#2 talks about their algorithm more generally.
- Your thoughts?

Overview

1. Background

Bayesian Inference/Latent variable modeling
Variational Inference
2. Overview of contributions
3. Paper $\# 1$

Reparameterization trick
Stochastic Gradient VB Estimators
Auto-encoding VB Algorithm
Variational Auto-Encoder
4. Paper \#2

Normalizing flows
VI algorithm
5. Comparison of papers
6. Related work

Related work

- Wake-sleep algorithm (Hinton et al. (1995))
- Applicable to same general class of continuous latent variable models as AEVB and also discrete latent variables.
- Drawback: concurrent optimization of two objective functions \nRightarrow optimization of (a bound of) the evidence.
- Non-linear Independent Components Estimation (NICE) (Dinh et al. (2014))
- Transformations are neural networks with easy to compute inverses
- Hamiltonian variational approx. (HVI) (Salimans et al. (2015))
- infinitesimal volume-preserving flow
- Elegant but not as computationally efficient

