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1 Bayesian Objective & Bayesian Learning Rule

• The Bayesian objective is an extension of the usual empirical risk minimization objective.

Empirical risk minimization:

θ∗ = arg min
θ

N∑
i=1

`(yi, fθ(xi)) +R(θ)︸ ︷︷ ︸
¯̀(θ)

Bayesian objective:

q∗(θ) = arg min
q(θ)∈Q

Eq
[ N∑
i=1

`(yi, fθ(xi))
]

+ DKL[q(θ)||p(θ)] (1)

– The prior p(θ) is related to the regularizer: p(θ) ∝ exp(−R(θ)).

– If exp(−`(yi, fθ(xi))) ∝ p(yi|fθ(xi)), then q∗(θ) is the posterior distribution for θ

– DKL[q(θ)||p(θ)] = Eq[¯̀(θ)]−H(q), where H(q) = Eq[− log q(θ)] is the entropy.

• The class of distributionsQ to be optimized over is assumed to be the set of a regular and minimial exponential
family:

q(θ) = h(θ) exp
[
〈λ, T (θ)〉 −A(λ)

]
– µ = Eq[T (θ)] = ∇λA(λ)

• The Bayesian learning rule (BLR) is given by

λt+1 ← λt − ρt∇̃λ
[
Eq[¯̀(θ)]−H(q)

]︸ ︷︷ ︸
DKL[q(θ)||p(θ)]

– ρt > 0 is a sequence of learning rates.

– The natural gradients are defined as

∇̃λEqt(·) = F (λt)
−1
[
∇λEq(·)|λ=λt

]
∗ By chain rule, ∇λEq(·)|λ=λt = ∇µEq(·)|µ=∇λA(λt)∇λµ. Therefore, they can be expressed as

∇̃λEqt(·) = ∇µEq(·)|µ=∇λA(λt)

• Optimality condition: A solution q∗ to eq. (1) satisfies

∇µEq[l̄(θ)] = ∇µH(q∗)

– It can be shown that ∇µH(q) = −λ (i.e. the natural parameter of q∗(θ) is the natural gradient of the
expected negative-loss).

• Main ideas:

– Many well-known learning algorithms (and its variants) can be directly derived from the BLR (after
choosing an appropriate Q and natural-gradient approximation).

– Natural gradients retrieve essential higher-order information about the loss landscape.
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2 Motivation for using natural-gradients

Each iteration of gradient-descent solves the following optimization problem:

λt+1 ← arg min
λ
〈∇λL(λt), λ〉+

1

2ρt
||λ− λt||22

• This implicitly penalizes changes in parameters.

• The parameters λt parameterize a distribution, but distance between two parameters might be a poor measure
of distance between corresponding distributions.

This motivates the use of natural-gradient algorithms, which replaces the penalty on parameters with a penalty on
distributions:

λt+1 ← arg min
λ

〈∇λL(λt), λ〉+
1

ρt
DKL[qθ||qt(θ)]

• I thought the notation was confusing here. DKL (specifically the q’s) is also a function of λ.

• I think this is what they meant by second order expansion of the KLD-term:

DKL[qλ(θ)||qλ+δt(θ)] = Eq
[ log qλ(θ)

log qλ+δt(θ)

]
,

log qλ+δt(θ) = log qλ(θ) + [∇λ log qλ(θ)]′δt + δ′t[∇2 log qλ(θ)]δt,

where δt = λt − λ.

• The natural-gradient descent update is given by

λt+1 ← λt − ρtF (λt)
−1∇λL(λt)

3 Derivation of BLR

BLR can be derived as:

1. Natural-gradient descent using a second order expansion of KL divergence (section 2)

2. Mirror descent using Legendre-duality

• Hoping someone else can explain this b/c I’m not very familiar with mirror descent.

4 Optimization algorithms from BLR

4.1 Examples

• Gradient descent is obtained from BLR by choosing q(θ) = N(θ|m, I) with unknown mean m, and using delta
method to approximate natural-gradient.

• Newton’s method extends this by setting q(θ) = N(θ|m,S−1) with unknown precision S.

• We could do multimodal optimization by setting q(θ) =
∑K
k=1 πkN (θ|mk, S

−1
k ).

– The fisher info. matrix for finite mixture models could be singular so the joint q(θ, z = k), where z is
the mixture-component indicator, should be used instead.

– The authors derived a BLR update for fixed πk.
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5 Deep-learning algorithms from BLR

• Dropout is a popular regularization method in deep learning where hidden units are randomly dropped from
neural networks during training. The authors propose an interesting way to include dropout into the Bayesian
learning rule by using a spike-and-slab mixture for the weights.

– I wonder what the BLR updates would look like if you use a horseshoe prior instead.

Dropouts:

fi,l+1(x) = h
( nl∑
j=1

θijlzjlfjl(x)
)
,

where fjl(x) denotes the j’th unit in the l’th layer for input x; zjl are independent Bernoulli w/ P (zjl = 1) =
π1; and θijl are the weights.

Spike-and-slab mixture for θjl

q(θjl) = πN (θjl|mjl, S
−1
jl ) + (1− π1)N (0, s−1

0 Inl),

where s0 > 0 is a fixed small value.

– Spike at 0 to induce sparsity

Horseshoe (Not in the paper)

q(θjl|λi) = N (θjl|0, λ2
i τ

2), q(λi) = C+(0, 1),

where C+(0, 1) is the half-Cauchy distribution.
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